The Holographic Brain
Holonomic brain theory, also known as 'The Holographic Brain', is a branch of neuroscience investigating the idea that human consciousness is formed by quantum effects in or between brain cells. This is opposed by traditional neuroscience, which investigates the brain's behavior by looking at patterns of neurons and the surrounding chemistry, and which assumes that any quantum effects will not be significant at this scale. The entire field of quantum consciousness is often criticized as pseudoscience. This specific theory of quantum consciousness was developed by neuroscientist Karl Pribram initially in collaboration with physicist David Bohm building on the initial theories of holograms originally formulated by Dennis Gabor. It describes human cognition by modeling the brain as a holographic storage network. Pribram suggests these processes involve electric oscillations in the brain's fine-fibered dendritic webs, which are different from the more commonly known action potentials involving axons and synapses. These oscillations are waves and create wave interference patterns in which memory is encoded naturally, and the wave function may be analyzed by a Fourier transform. Gabor, Pribram and others noted the similarities between these brain processes and the storage of information in a hologram, which can also be analyzed with a Fourier transform. In a hologram, any part of the hologram with sufficient size contains the whole of the stored information. In this theory, a piece of a long-term memory is similarly distributed over a dendritic arbor so that each part of the dendritic network contains all the information stored over the entire network. This model allows for important aspects of human consciousness, including the fast associative memory that allows for connections between different pieces of stored information and the non-locality of memory storage (a specific memory is not stored in a specific location, i.e. a certain cluster of neurons).
https://www.youtube.com/embed/uSVHiwDGlIg
Comments
Post a Comment